Challenges in influenza control

Montserrat Torremorell, DVM, PhD Professor & Department Chair

Science-driven solutions[®]

University of Minnesota

My key messages for today

- Influenza is an important pathogen of the porcine respiratory disease complex and a public health threat
- Gilts and piglets are key subpopulations to control influenza
- Piglets are a source of virus to other pigs, the sows and the environment
- Maternal immunity helps but is not enough to fully prevent infections
- Science-driven solutions[®]
 Management and vaccination practices are key to control influenza indirect transmission

The virus

 Influenza A virus is an RNA segmented virus prone to change

 Multispecies – Humans

Science-driven sol

Endemic

Influenza A in pigs

Endemic in swine (H1N1, H1N2 and H3N2) Important respiratory pathogen of the PRDC complex with high morbidity and low mortality Difficult to control and a public health concern

Influenza is costly on its own and even more costly as part of co-infections

2012 AASV Annual Meeting: Integrating Science, Welfare, and Economics in Practice

MCT: mortality, culls, tail-enders

Dykhuis et al., 2015

Infections at the pig level

Influenza infections timeline

However, infections at the group level can be prolonged

Diaz et al., 2015

Infection dynamics matter!

Piglets and gilts are key subpopulations for introducing, maintaining and spreading influenza

RESEARCH ARTICLE

Association between Influenza A Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds

Andres Diaz, Andres Perez, Srinand Sreevatsan, Peter Davies, Marie Culhane, Montserrat Torremorell*

Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America

Citation: Diaz A, Perez A, Sreevatsan S, Davies P, Culhane M, Torremorell M (2015) Association between Influenza A Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds. PLoS ONE 10(6): e0129213. doi:10.1371/ journal.pone.0129213

Variable	Group	OR (95% CI)
Subpopulation	Science-oriven solutions	
	New gilts	7.9 (1.4, 43.9)*
	Piglets	4.4 (1.1, 17.1) *

Table 4. Results from the multivariate analysis (Mixed effects model).

Introduction of influenza positive gilts increases likelihood of influenza in piglets at weaning

Season-adjusted multivariable analysis of farm factors associated with influenza A virus infection in piglets at weaning.

Chamba et al.,

Gilts...are a big challenge

- Gilts (even internal replacements) may be a source of virus introduction
- Variability between groups of gilts
- Isolation/quarantines not set up to prevent influenza introductions
 - Larger groups of gilts may require longer isolations
- Even if negative stock, likely that gilts will get infected on arrival if flu exist in gilt development unit
- Vaccination Science-driven solutions[®]

Piglets a key subpopulation

How often are pigs weaned influenza positive?

Percentage of positive groups: Study 1: 75/305 (25%) Study 2: 427/1523 (28%) Study 3: 64/177 (36%)

Piglets are born negative, but....

Influenza positive litters (%) at processing

Prevalence at weaning ranged 40-90%

Co-circulation of strains is common in piglets

Diaz et al., 2017

Piglets can become infected with influenza in multiple ways

Contaminated snouts = Contamination of other pigs, tools, materials, hands, coveralls, environment, etc

Air = Inhalation & environmental contamination

Science-driven solutions

Direct and indirect transmission routes are important

Allerson et al., 2013

Influenza sow to pig transmission

- Not intra utero
- Not (commonly) at farrowing
- Mechanically during adoptions and at weaning

Science-driven solutions

IINNESOTA scover℠

Pigs adopted by nurse sows were more likely to become infected

Adopted piglets had higher influenza detection rates during the overall suckling period

Trend reverted at weaning

* Unadjusted p values

Garrido et al., 2020

Very low prevalence of influenza on sows due to farrow

Proportion of positive sows by treatment and day of sample collection

P value vas calculated using a chi square test using the total proportion of positive litters on each sampling point by experimental groups

Lopez et al., 2022 (under review)

Piglets are a source of infection to the sows

Influenza dynamics by litters in rooms with and without strict internal biosecurity protocols

Lopez et al., 2022 (under review)

Effect of internal biosecurity practices on influenza infection (udder wipes)

RT-PCR proportion of positive litters by treatment and day of sample collection

Internal biosecurity practices delayed IAV infections but did not affect status at weaning

UNIVERSITY OF MINNESOTA Driven to Discover™

High level of influenza contamination in hands and tools

Proportion of positive wipes of carts, tools and farm worker hands by RT-PCR.

			-	
Farm	Cart/Tools	Hands		
Α	Not collected	19/35 (54.3)		
В	5/15 (33.3)	19/37 (51.4)		
С	8/13 (61.5)	27/39 (69.2)	1 /2	5 1
Total	13/28 (46.4)	65/111 (58.6)	R	
	3 VI +	5 VI +		

Which farm activities were more likely to result in influenza contamination of farm workers?

- Activities performed on piglets of weaning age resulted in higher IAV contamination.
- IAV can be detected early in lactation.
- Hands and coveralls had similar contamination rates

Recommendations

Evaluation of internal biosecurity measures combined with sow vaccination to wean influenza negative piglets

Sow vaccination can reduce influenza in weaningage pigs

Sow vaccination reduces influenza in piglets at weaning

Factors	Categories	Probability of influenza positive	Risk Difference	Risk Ratio	Odds Ratio	p-value
Influenza sow vaccination protocol	Whole-herd (WH)	0.20	-0.21	0.49	0.36	0.0042
	Pre-farrow (PF)	0.25	-0.16	0.61	0.49	0.0154
	No vaccination	0.41	Ref.	Ref.	Ref.	Ref.
	WH vs. PF		-0.05	0.80	0.73	0.4303

Science-driven solutions®

Season-adjusted multivariable analysis of farm factors associated with influenza A virus infection in piglets at weaning.

Management and sow vaccination combined Effect on IAV prevalence at weaning

Table 5. Number (percentage) of influenza A virus rRT-PCR positive litters before and after intervention measured by udder skin wipes by farm. Statistical significance was measured between pre-intervention and post-intervention positive proportions.

Exporimontal		Pre-intervention	Post-	P value [^]
aroup	Farm	prevalence (%)	intervention	
group		STELLEN	prevalence (%)	
Control	F	73/90* (81)	71/90 (79)	0.7
Treatment	A	62/90 (69)	56/90 (62)	0.34
Treatment	B	31/90 (34)	12/90 (13)	0.001
Treatment	C	7/90 (8)	0/90 (0)	0.01
Treatment	D	13/90 (14)	0/90 (0)	<0.001
Treatment	E	12/90 (13)	0/90 (0)	0.001
Total	-	125/450 (27.8)	68/450 (15.1)	<0.0001
treatment+	Scienc	e-driven sol	utions®	

*Number of positive samples / total number of samples tested (percentage).

^P values were obtained using a Pearson's Chi-squared test.

⁺Total values were summarized using farms assigned to the treatment group.

4 farms had significant reductions in IAV prevalence

Comprehensive control of influenza

Piglets also a source of environmental contamination and contamination of fomites

My key messages for today

- Influenza is an important pathogen of the porcine respiratory disease complex
- Gilts and piglets are key subpopulations to control influenza
- Piglets are a source of virus to sows and the environment
- Maternal immunity helps but is not enough to fully prevent infections
- Management and vaccination practices are key to control influenza indirect transmission

