Eradication of infectious diseases in pigs

Lessons learned & challenges in the future

b UNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

Heiko Nathues

Prof. Dr. med. vet. habil. Prof. h.c., PhD
Dipl. ECPHM, FTA Schweine, Cert Vet Ed, FHEA
EBVS® European Veterinary Specialist in Porcine Health Management

Clinic for Swine, Vetsuisse Faculty, University of Bern, Switzerland

b UNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

What we will talk about?

- Principles
- Concepts
- Examples
- Science-driven solutions®

Eradication of infectious diseases in pigs

Leman China Swine Conference 25th-27th OCT 2024, Chengdu (CN)

Heiko Nathues Clinic for Swine Vetsuisse Faculty University of Bern

Leman China Swine Conference

Agenda

b UNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

1 Understanding the epidemiology of an infection

2 Evaluating the socio-economic value of an eradication

3 Applying sustainable eradication concepts

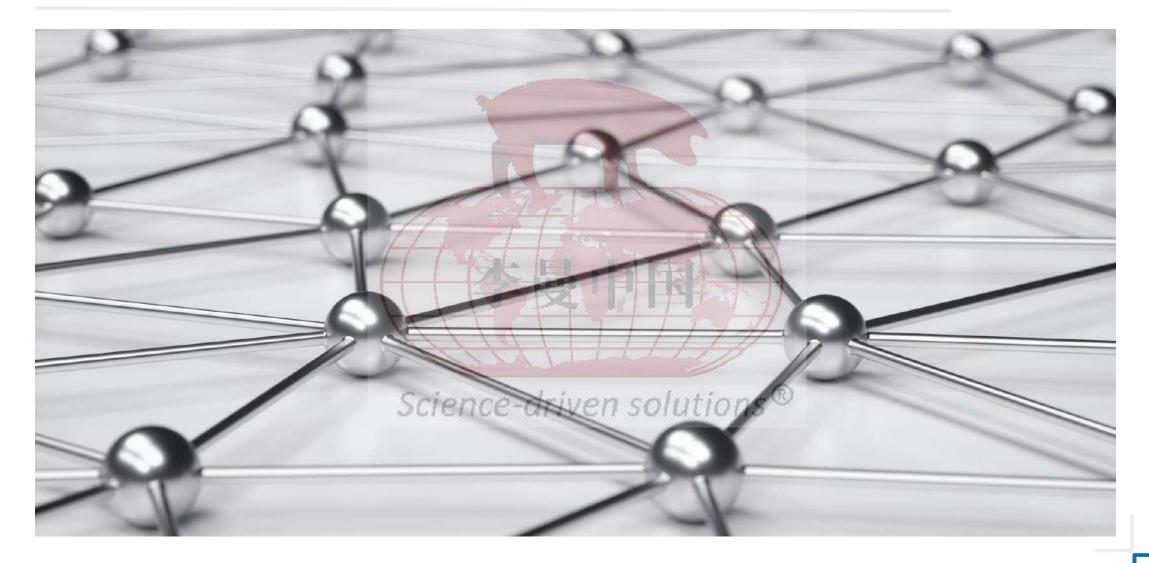
4 Designing sampling strategies to control the success

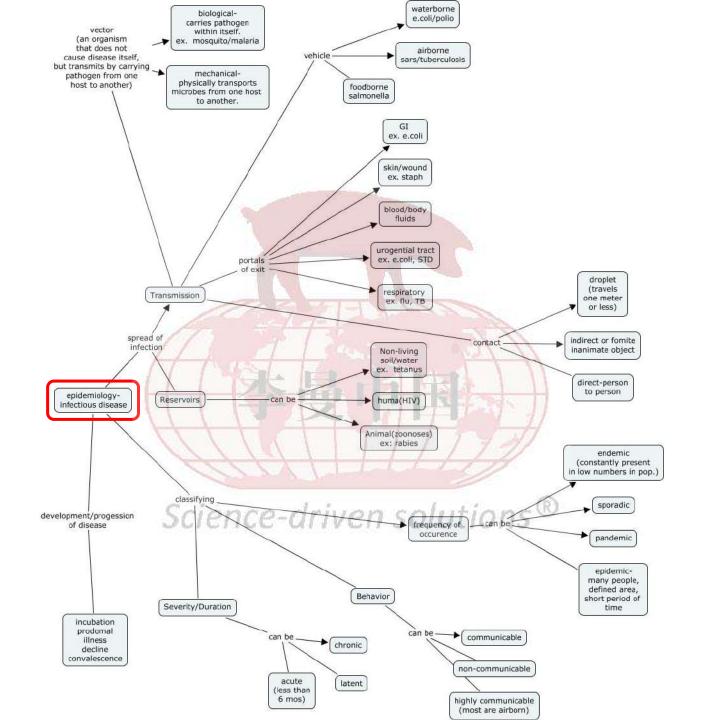
Designing tailor-made eradication programmes

Eradication of infectious diseases in pigs

Leman China Swine Conference 25th-27th OCT 2024, Chengdu (CN)

Heiko Nathues Clinic for Swine Vetsuisse Faculty University of Bern




5

Understanding the epidemiology of an infection

UNIVERSITÄT BERN

Source: http://184.182.233.150

UNIVERSITÄT

- Age

Co-infections

- Parasites

- diff. Strains

- Strains with AMR

- Bacteria

- Viruses

- Resistance
- Immunity (active, passive)
- Performance

Infection /

Disease

Agent

- Virulence
- Dose
- Resistance
- Persistence
- Tenacity

Management & Hygiene

- Vaccination
- Gilt acclimatisation
- Farrowing rhythm
- Cleaning & Disinfection
- Idle time of barns
- Treatments
- Farrowing control
- Castration
- Weaning time
- Replacement
- Movement
- Marketing
- Stress minimizing

Environment

- Age structure of the herd
- Structure of barns
- Housing systems
- Separation of production stages
- Separation of farrowing
- groups
- Pig density
- No. of pigs per pen
- Air volume per pig
- Pen barriers
- Ventilation
- Handling of liquid manure

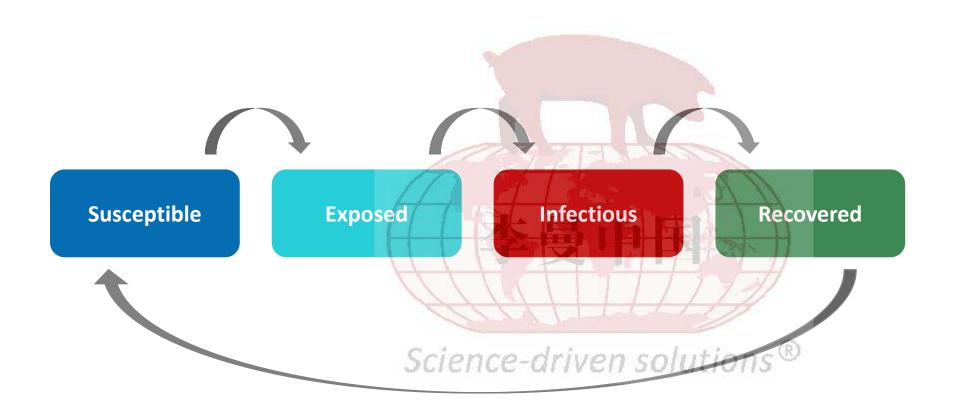
modified from Stärk, 1998

Important knowledge about the epidemiology

b UNIVERSITÄT BERN

We should know about

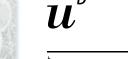
- Transmission into the herd
- Spread within the herd
- Persistance in animals and/or groups of animals
- Elimination of the pathogen(s) from animals and their environment



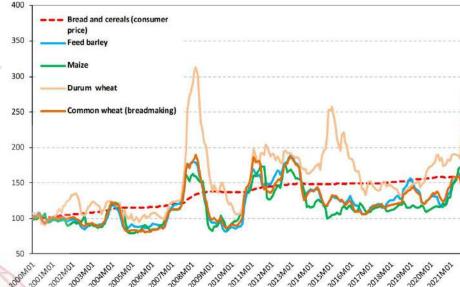
Important knowledge about the epidemiology

b UNIVERSITÄT BERN

Evaluating the socio-economic value of an eradication



Before we should start any eradication programme ...


UNIVERSITÄT

Socio-economic analysis Market-, environmental- & social impacts Technical analysis Livestock **Performance** Health production data data data Science driven solutions® Data assessment Production systems (i.e. pig farms) © H. Nathues

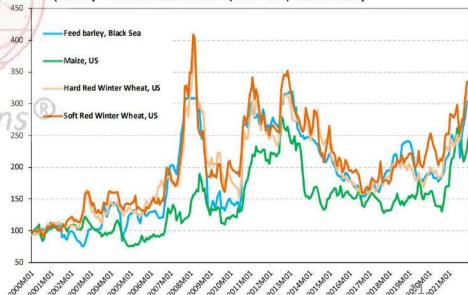

Livestock production data

Chart 3. Cereals/bread and cereals based products: EU agricultural market and consumer price developments
(January 2000 until December 2021, 2000=100)

Chart 4. Cereals: international price developments (January 2000 until December 2021, 2000=100, based on USD)

In case of PRRS

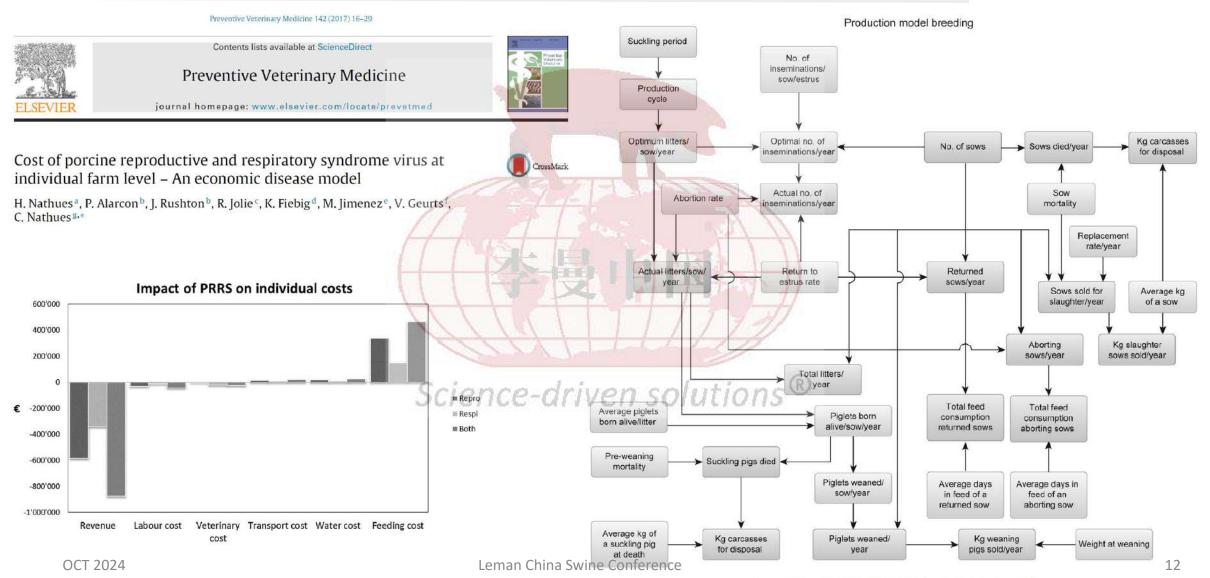


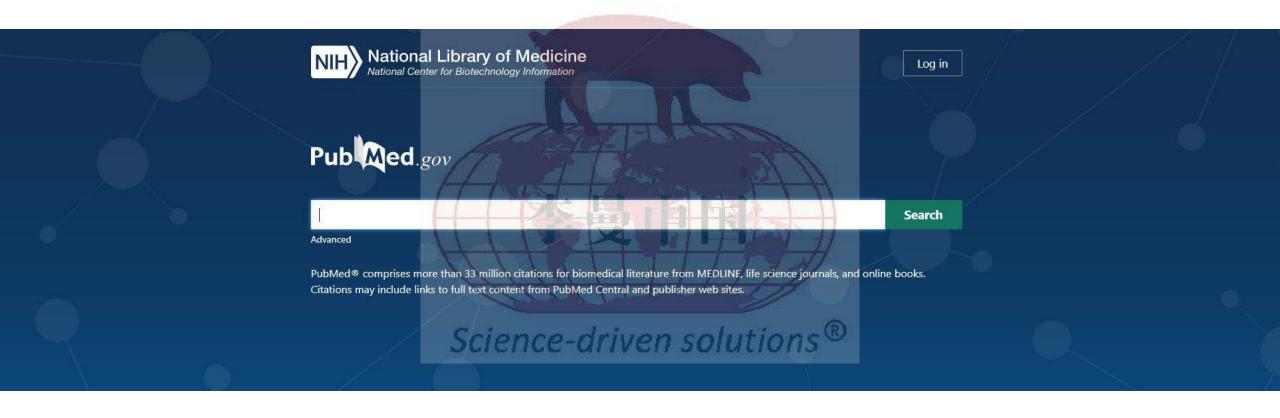
Fig. 1. Schematic production model of the breeding part in a sow herd.

In case of Swine Dysentery

UNIVERSITÄT BERN

Retrospektive Studie zur Sanierung von Beständen mit Schweinedysenterie (*Brachyspira hyodysenteriae*) in der Schweiz

R. S. S. Cadetg¹, B. Vidondo², H. Nathues¹, G. Schüpbach², F. Zeeh¹


Tabelle 4: Direkte Tierverluste und berechnete Ausfallkosten in 68 Schweizer Beständen mit Sanierung von Schweinedysenterie. Als Verlust zählte der Verkauf von Tieren zu einem früheren Zeitpunkt als üblich und das vorzeitige Ausmerzen von Zuchttieren. Zur Berechnung dieser Verluste (Ausfall-Kosten) wurde für Mast- und Zuchtschweine der "Vergleichbare Deckungsbeitrag für 850g/d bei Alleinfutter" (DB) der entsprechenden Alterskategorie im Jahr der Sanierung gemäss AGRIDEA und dem Forschungsinstitut für biologischen Landbau (FiBL) verwendet. Die DB für Absetzferkel wurden freundlicherweise durch die UFA zur Verfügung gestellt. Auf die Berechnung der Ausfallkosten durch Babyferkel wurde verzichtet.

Direkte Tierverluste und berechnete vor Sanierung Kosten			n/N*	Median/ <u>Mittelwert</u>	Minimum – Maximum	Interquartils- abstand/ <u>Standard-</u> <u>abweichung</u>	
	1	Mastbestände	0/4	0	0-0	± 0	
Anza	hl Verluste	Ferkelerzeuger	9/10	<u>25</u>	0-500	± 200	
Abse	etzferkel	Abferkelbestände	22/22	143.5	0-440	± 126	
		Deck-Warte-Bestände	0/0	=	:=	-	
1	1	Mastbestände	0/0		-	abstand/Standard- abweichung 1	
Ausf	all-Kosten	Ferkelerzeuger	6/9	1127	300-11422.4	± 2161	
Abse	etzferkel (CHF)	Abferkelbestände	20/22	<u>517</u>	91-55165.5	± 1070	
MS		Deck-Warte-Bestände	0/0	-	.=	_	
		Mastbestände	31/32	0	0-83	± 0	
Anza	Anzahl Verluste Masttiere	Ferkelerzeuger	6/7	0	0-357	± <u>0</u>	
Mast		Abferkelbestände	8/10	0	0-200	± 2	
101	1	Deck-Warte-Bestände	0/0	-	e e	-	
2		Mastbestände	6/31	850	102-4482	± 1104	
Ausf	all-Kosten	Ferkelerzeuger	1/6	14994	14994-14994	± <u>0</u>	
Mast	Mastschweine (CHF)	Abferkelbestände	3/8	204	51-10200	± 5074	
	ULLY CIT	Deck-Warte-Bestände	0/0	+:	is e r	-	
		Mastbestände	0/0	22	-	-	
Anza	hl Verluste	Ferkelerzeuger	8/10	40	0-134	± <u>73</u>	
Zuch	ttiere	Abferkelbestände	21/22	0	0-0	± 0	
		Deck-Warte-Bestände	4/4	0	0-50	± <u>12</u>	
		Mastbestände	0/0	2	- 12		
Ausf	all-Kosten	Ferkelerzeuger	7/8	<u>25536</u>	8940-235840	± 56573	
Zuch	ttiere (CHF)	Abferkelbestände	0/21	20	5 <u>2</u> 2	-	
Anzahl Zuchtt Ausfall Zuchtt	in a Consider a Const	Deck-Warte-Bestände	1/4	348	348-348	± 0	

In case of other diseases

Applying sustainable eradication concepts

Sustainable eradication concepts

Proven to work in the field

High rate of success

Science-driven solutions®

Economically efficient

OCT 2024 Leman China Swine Conference © H. Nathues

Eradication of Mycoplasma hyopneumoniae

b UNIVERSITÄT BERN

P. Yeske, et al.

Preventive Veterinary Medicine 174 (2020) 104811

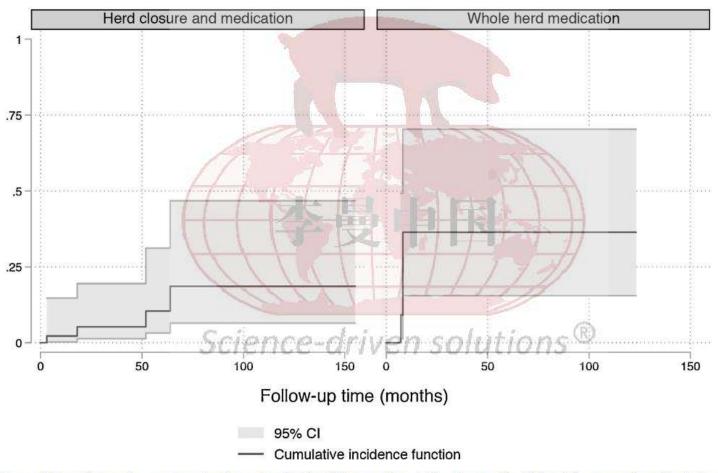
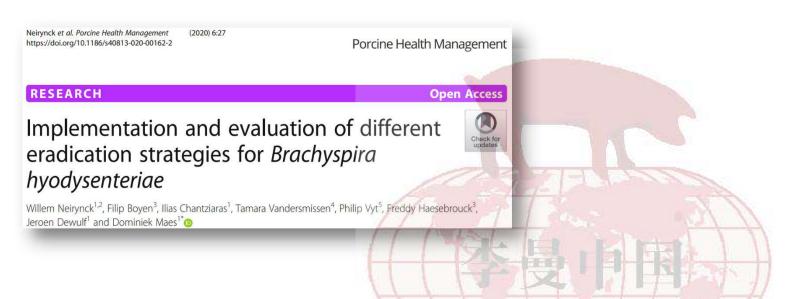
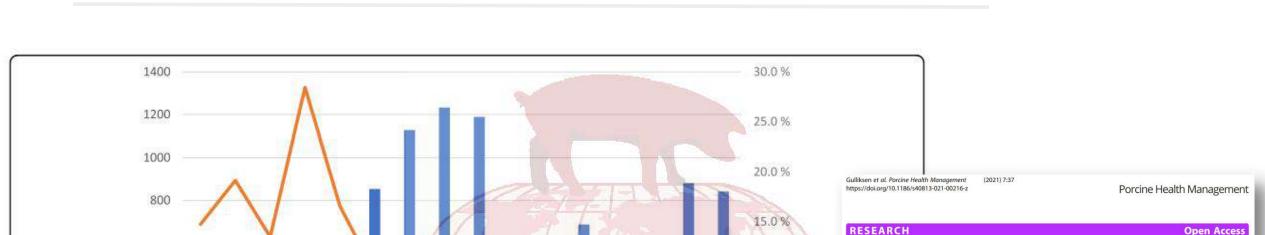



Fig. 1. Cumulative incidence of Mycoplasma hyopneumoniae detection during follow-up by eradication method (herd closure and medication, or whole herd medication).

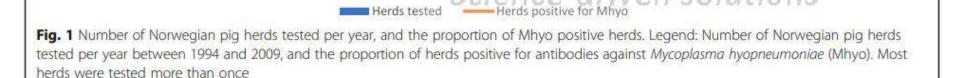
Eradication of *Brachyspira hyodysenteriae*

Eradication was successful in four farms. Two of them (farrow-to-finish and finishing herd) had applied total depopulation and respected a vacancy period of at least 3 weeks. A third farm (gilt farm) practised partial depopulation, the rooms remained empty for 28 days and changed the source of breeding gilts. The fourth farm practised partial depopulation, the stables remained empty for 3 weeks, and used antimicrobial medication. The eradication programme was not successful in six farms.


The «Swiss method» of eradication

600

Check for updates



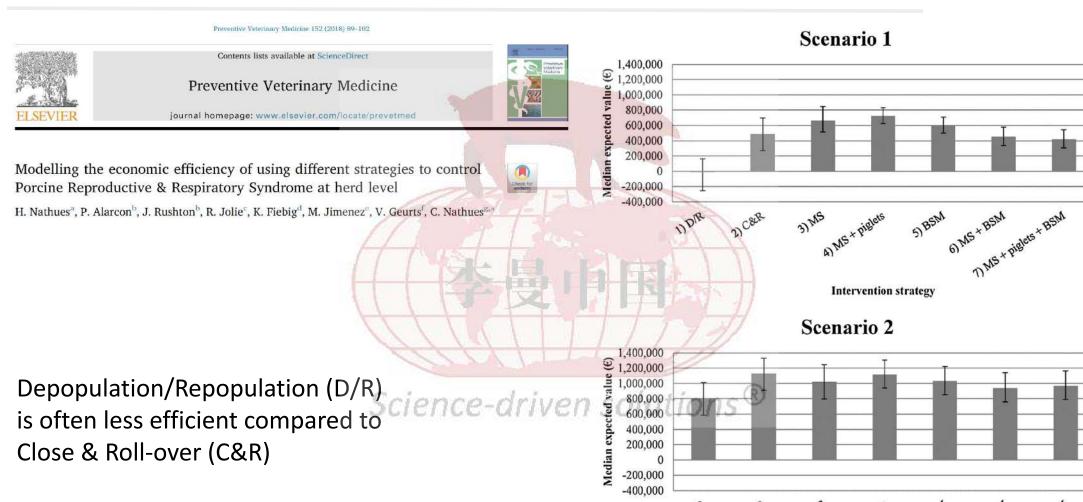
10.0 %

5.0 %

Successful eradication of Mycoplasma hyopneumoniae from the Norwegian pig population – 10 years later Stine Margrethe Gulliksen^{1*}, Børge Baustad¹, Tore Framstad^{2,3}, Anne Jørgensen^{1,3}, Audun Skomsøy³,

Oddbjørn Kjelvik³, Mona Gjestvang^{1,4*}, Carl Andreas Grøntvedt^{5†} and Bjørn Lium^{1†}

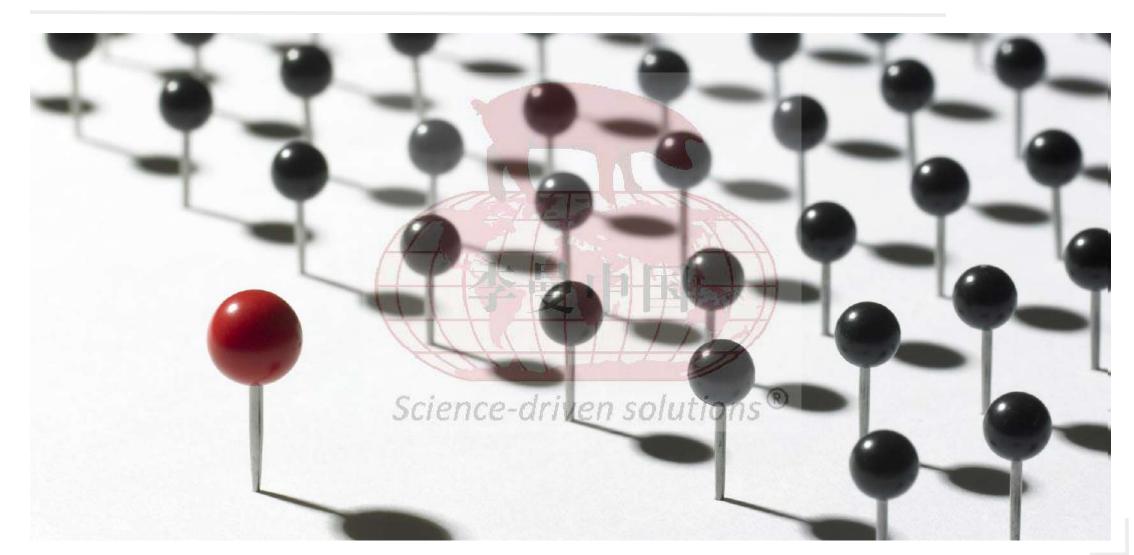
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009


Economic efficiency

Intervention strategy

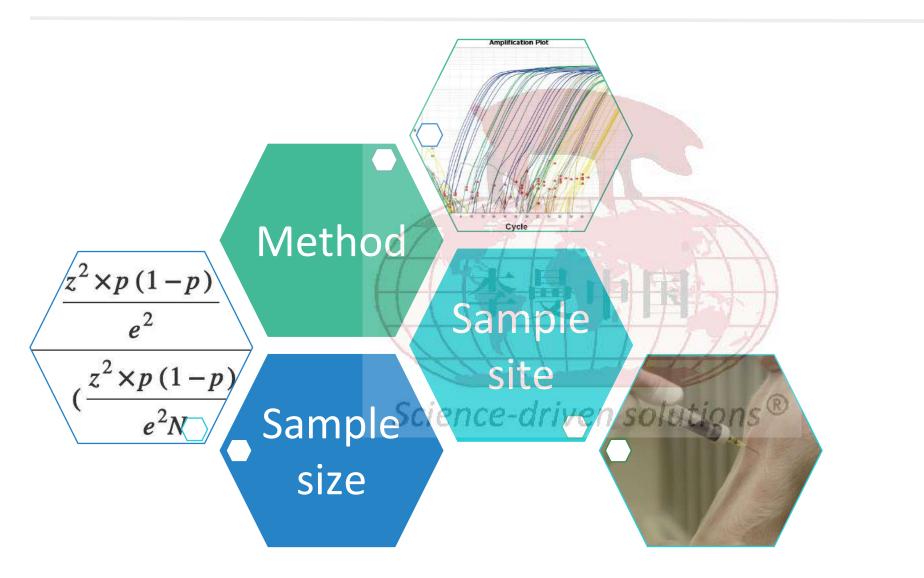
b UNIVERSITÄT BERN

Sustainable eradication concepts


	Pros	Cons
Depopulation/Repopulation	 Works with nearly every infection Very high success rate 	Very expensiveLoss of genetic material
Close & Roll-over (load, close, homogenize)	 Cost efficient Saves genetic material Positive cash-flow 	- Uncertainty of success
Test & Removal	 Potentially most cost efficient Saves genetic material Positive cash-flow // SOLUTION 	- Only when prevalence is <25%! - May fail due to false negatives
Others (mass treatment, etc.)	- Easy to apply	- Uncertainty of success

Designing sampling strategies to control the success

 $u^{^{\scriptscriptstyle b}}$



Select the «best option»

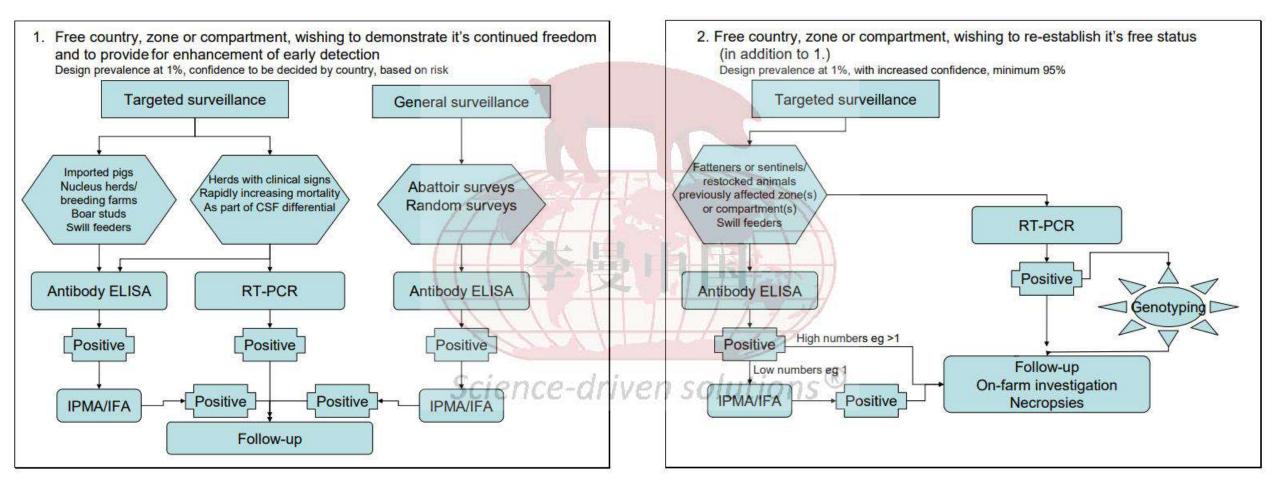
UNIVERSITÄT BERN

In case of PRRSV on country level (OIE guidelines)

The following specimens should be collected:

- For virus isolation and RT-PCR
 - Whole blood (EDTA) and also serum, lung, respiratory tract, spleen and tonsils of affected animals.
 Samples from mummified or aborted litters are unlikely to yield virus but can still be useful for RT-PCR.
- For antibody testing (serology)
 - Serum from up to 20 exposed animals in the herd.

Specimens should be chilled and forwarded unfrozen on water ice or with frozen gel packs.


- RT-PCR
 - Whole blood (EDTA), buffy coat and clarified homogenates of the above tissues are best. At this time, there is no fully validated PCR that has international acceptability. Please consult the OIE Manual for suggested methods.
- Serological tests
 - IgM can be detected within 7 days of infection and IgG can be detected within 14 days. Humoral antibody titres reach a maximum about 5–6 weeks after infection. Antibody can be detected by ELISA and by the indirect staining of pre-prepared monolayers of infected cells (IPMA and IFA). Antibody levels can drop quite quickly in the absence of circulating virus.

In case of PRRSV on country level (OIE guidelines)

UNIVERSITÄT BERN

In case of PRRSV on herd level

b UNIVERSITÄT BERN

COMMENTARY

PEER REVIEWED

Terminology for classifying swine herds by porcine reproductive and respiratory syndrome virus status

Derald J. Holtkamp, DVM, MS; Dale D. Polson, DVM, PhD; Montserrat Torremorell, DVM, PhD; and committee members
Bob Morrison, DVM, PhD, MBA (chair); Dyneah M. Classen, DVM; Lisa Becton, DVM; Steve Henry, DVM; Max T. Rodibaugh, DVM;
Raymond R. Rowland, PhD; Harry Snelson, DVM; Barb Straw, DVM, PhD; Paul Yeske, DVM, MS; Jeff Zimmerman, DVM, PhD

Recommended protocol to assess PRRSV shedding status of weaning-age pigs for Category II-A or II-B breeding herds

-						
	OM	111	VA	m	01	nts
- 17	CU	uı	100		C 1	163

tests if sampling every 30 days); no clinical signs in breeding herd

	Test(s) performed	Polymerase chain reaction
	Animals tested	Weaning-age pigs*
	Specimen(s) collected	Serum (blood, notch/swab, tail/swab)
	Sampling or whole-herd testing (every animal in population)	Sampling
Š	If sampling:	
-	Targeted subpopulation (if any) sampled	Light-weight males from gilt litters may increase sensitivity (optional)
	Systematic sampling procedure	One pig per litter, both pig and litters selected randomly
	Minimum number of samples per herd test	30 samples, determined by target prevalence to be detected of 10%, and 95% confidence level, for any population size
	Pooling strategies (if any)	Pools of five
ľ	Procedures to rule out false-positives	None
	Minimum number of periodic herd tests	Minimum of four to account for variation in prevalence and increase confidence of finding positives if present
	Frequency of herd tests (minimum frequency)	Every 30 days or more frequently to confirm status
		Frequency to reconfirm status after initial tests depends upon reason for classifying herd
	Decision rules that classify the herd	None positive over a 90-day period (four consecutive negative herd

"When possible, pooling of samples to increase sample size, frequency of testing, or both, and targeted sampling of subpopulations to improve herd-level sensitivity, are recommended."

In case of PRRSV on herd level

UNIVERSITÄT BERN

COMMENTARY PEER REVIEWED

Proposed modifications to porcine reproductive and respiratory syndrome virus herd classification

Derald J. Holtkamp, DVM, MS; Montserrat Torremorell, DVM, PhD; Cesar A. Corzo, DVM, MS, PhD; Daniel C. L. Linhares, DVM, MBA, PhD; Marcelo N. Almeida, DVM, MS; Paul Yeske, DVM, MS; Dale D. Polson, DVM, MS, PhD; Lisa Becton, DVM; Harry Snelson, DVM; Tara Donovan, DVM; Jeremy Pittman, DVM; Clayton Johnson, DVM; Carles Vilalta, DVM, PhD; Gustavo S. Silva, DVM, PhD; Juan Sanhueza, DVM, PhD

Update in 2021:

- Testing as before (blood samples collected by the vet)
- Testing of processing fluids (collected by the farmer)
- Testing of oral fluids (collected by the farmer)

Published online 2016 Nov 7. doi: 10.1371/journal.pone.0166300

PMCID: PMC5098819

PMID: 27820859

Comparison of PRRSV Nucleic Acid and Antibody Detection in Pen-Based Oral Fluid and Individual Serum Samples in Three Different Age Categories of Post-Weaning Pigs from Endemically Infected Farms

Nick De Regge and Brigitte Cay

Martin Beer, Editor

Table 3. Comparison of PRRSV specific antibody detection in oral fluid and serum via ELISA. A litter was considered PRRSV positive in serum as soon as one serum sample originating from that litter tested positive.

			OF .	
		pos	neg	
serum	pos	44	0	44
	neg	2	9	11
	117	46	9	55

-> Relative specificity: 85%

Table 2. Comparison of PRRSV detection in oral fluid and serum via gRT-PCR (a) and overview of relative test characteristics and mean percentage of PRRSV positive pigs per pen for the different age categories (b). A litter was considered PRRSV positive in serum as soon as one serum sample originating from that litter tested positive.

a.							11		
			pos	neg					
	serum	pos	30	C_12	42	n coluti	onc®	-> Relative sensitivity: 71%	
		neg	1	27	28	TI JUIUCI	0113		
			31	39	70				
b.		relative sensitivity		relative specificity		kappa	mean (± SEM) % PRRSV positive pigs / pen		
	overall	7	71	9	6	0,637		30 ± 4	
	8–12	8	39	10	00	0,8		55 ± 8	
	16–20	g	93	9	1	0,838		29 ± 7	
	24–28	1	0	10	00	0,104		6 ± 2	© H. Nathues
				·			· ·		

MDPI

 $u^{^{\scriptscriptstyle b}}$

UNIVERSITÄ BERN

Article

Porcine Reproductive and Respiratory Syndrome Surveillance in Breeding Herds and Nurseries Using Tongue Tips from Dead Animals

Jordi Baliellas ¹, Elena Novell ¹, Vicens Enric-Tarancón ¹, Carles Vilalta ² and Lorenzo Fraile ^{3,4,*}

- 30 blood samples
 - 10% prevalence
 - 95% confidence
- 30-100 tongue samples
- Kappa index of 0.55

«Tongue samples more sensitive than blood samples»

Table 1. Sow farm and sample characteristics to study the agreement between paired serum and tongue samples (between brackets) for Porcine Reproductive and Respiratory Syndrome virus (PRRSV) diagnosis in a production batch.

1	Farm (Pair)	Farm Size 1	Type of Farm ²	PRRSV History ³	Age ⁴	Sample Date	Timing from Diagnosis to Sampling	PRRSV Batch Results Serum/Tongues	Agreement (Y/N) ⁵
-1	4(1)	2500	FTF	Positive	3 weeks	5 February 2019	371	-/+	N
	4(2)	2500	FTF	Positive	1 day	5 February 2019	371	-/+	N
- 1	4(3)	2500	FIF	Positive	1 day	12 March 2019	406	+/+	Y
- 1	4(4)	2500	FTF	Positive	3 weeks	12 March 2019	406	-/+	N
	4 (5)	2500	FTF	Positive	1 day	9 May 2019	464	-/+	N
	4(6)	2500	FTF	Positive	1 day	28 July 2020	910	+/+	Y
	5(1)	2300	FTF	Positive	1 day	12 March 2019	464	+/+	Y
1	5(2)	2300	FTF	Positive	1 day	28 July 2020	206	+/+	Y
	6(1)	1700	FTF	Positive	1 day	6 March 2019	15	+/+	Y
	6(2)	1700	FTF	Positive	3 weeks	6 March 2019	15	+/+	Y
100	8(1)	2400	FTF	Positive	3 weeks	19 February 2019	120	-/+	N
r_{ij}	8(2)	2400	CFTF///	Positive	1 day	19 February 2019	120	+/+	Y
10.0	9(1)	2350	FIFT	Positive	1 day	11 March 2020	109	+/+	Y
	9(2)	2350	FTF	Positive	3 weeks	11 March 2020	109	+/+	Y
	24(1)	3000	FTF	Positive	1 day	16 July 2020	87	-/+	N
	24 (2)	3000	FTF	Positive	1 day	18 June 2020	59	+/+	Y
	36 (1)	2200	FTW	Positive	1 day	28 July 2019	203	+/+	Y
	36 (2)	2200	FTW	Positive	1 day	18 September 2019	255	+/+	Y
	47 (1)	750	FTW	Positive	1 day	10 September 2019	369	+/+	Y
	50 (1)	2000	FTF	Positive	1 day	9 December 2020	330	+/+	Y
	50 (2)	2000	FTF	Positive	1 day	3 November 2020	294	+/+	Y
	50 (3)	2000	FTF	Positive	1 day	8 September 2020	238	+/+	Y
	52 (1)	3080	FTF	Positive	1 day	18 August 2020	120	+/+	Y
	54 (1)	650	FTF	Negative	1 day	25 April 2019	NA	-/-	Y
	55 (1)	2400	FTF	Positive	1 day	15 January 2020	93	+/+	Y

Lemma being sowing the farm. FTF: farrow-to-feeder. PRRSV history: negative (never infected with PRRSV) or positive (infected with PRRSV) farm. Age of sampling. Y = yes/N = no. NA = non-applicable because the farm is PRRSV-negative.

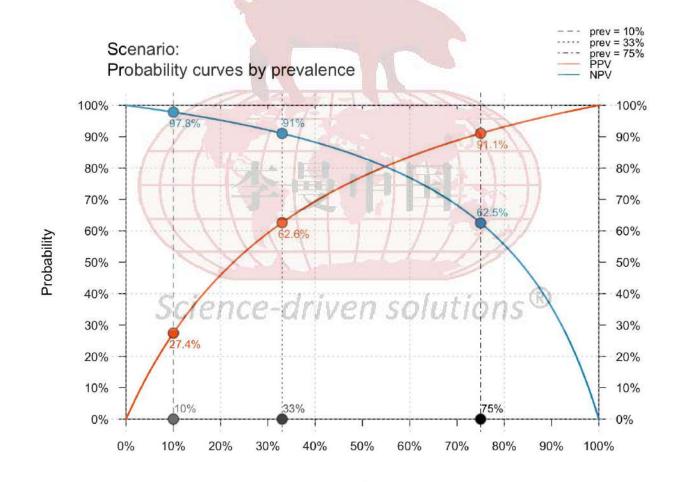
l

Article

Porcine Reproductive and Respiratory Syndrome Surveillance in Breeding Herds and Nurseries Using Tongue Tips from Dead Animals

Jordi Baliellas ¹, Elena Novell ¹, Vicens Enric-Tarancón ¹, Carles Vilalta ² and Lorenzo Fraile ^{3,4,*}

- The median herd size was 2350 sows
- 30/1000 >>> max. possible prevalence: 9.4%
- 100/1000 >>> max. possible prevalence: 2.9%
- Kappa index of 0.55 is considered 'moderate'
- Repeated sampling in the same herd leads to clustering utions
- Estimating diagnostic test accuracies in complex population structures requires Bayesian latent class analysis or similar methods


Negative predictive value (NPV)

UNIVERSITÄT BERN

$$NPV = \frac{specificity * (1 - prevalence)}{specificity * (1 - prevalence) + (1 - sensitivity) * prevalence}$$

Prevalence

https://hneth.github.io/riskyr/reference/plot_curve.html

For most of the diseases on herd level

UNIVERSITÄT BERN

Collect blood samples

estimated prevalence: 5% (max. 10%)

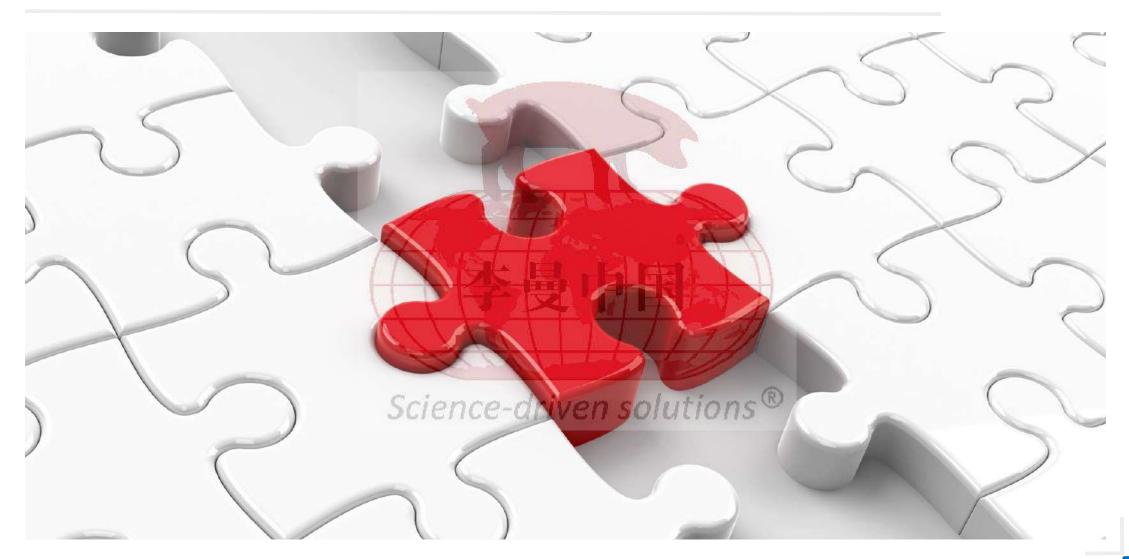
• confidence: 95%

Test these by RT-PCR and/or ELISA

Repeat testing according to risk

Never blindly trust ...

b UNIVERSITÄT BERN



Designing tailor-made eradication programmes

b Universität Bern

Designing tailor-made eradication programmes

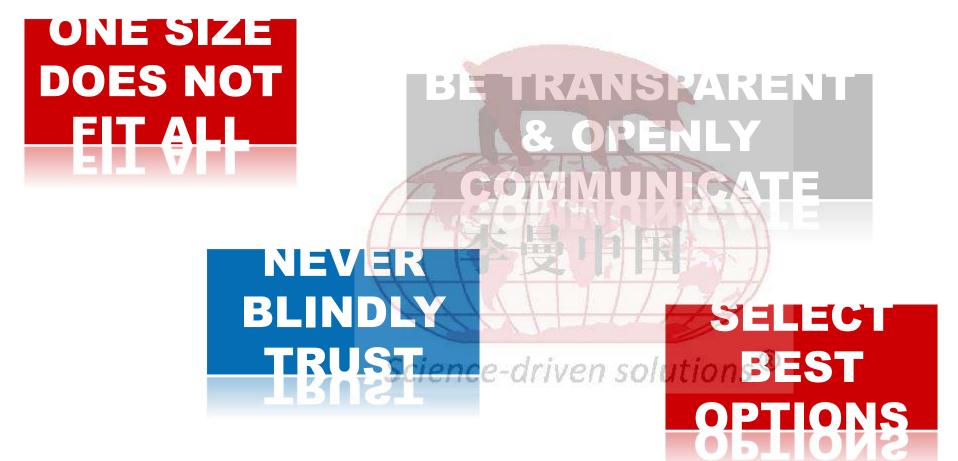
1

Know the epidemiology of the infection in the herd

2

Evaluate the socio-economic value of the eradication

3


Apply a sustainable eradication concept

Science-driven solutions®

4

Implement an appropriate sampling strategy to really control the success

Eradication of infectious diseases in pigs

UNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

Eradication of infectious diseases in pigs

Leman China Swine Conference 25th-27th OCT 2024, Chengdu (CN)

Heiko Nathues
Clinic for Swine
Vetsuisse Faculty
University of Bern

Thank you very much for your attention!

UNIVERSITÄT

Universität Bern | Universität Zürich

vetsuisse-fakultät

Eradication of infectious diseases in pigs

Leman China Swine Conference 25th-27th OCT 2024, Chengdu (CN)

Vetsuisse Faculty University of Bern

Heiko Nathues Clinic for Swine

Contact

Prof. Dr. med. vet. habil. Prof. h.c. Heiko Nathues, PhD Dipl. ECPHM, FTA Schweine, Cert Vet Ed, FHEA EBVS® European Veterinary Specialist in Porcine Health Management

! Head of the Clinic for Swine

President of the European Board of Veterinary Specialisation (EBVS)

Past-President of the European College of Porcine Health Management (ECPHM)

Bremgartenstrasse 109 a CH-3012 Bern Tel. +41 (0)31 684 23 44 heiko.nathues@unibe.ch

