Evaluating new product on the farm - approaches to field trials

Dr. Tom Wetzell Swine Veterinary Consultant Science-driven sol For His Kingdom, LLC

Designing scientific field trials

Most problems in studies are due to poor design (not poor analysis)

Develop Written and Precise Trial Protocol

- Study Name 1.
- Study Contacts 2.
- System, Flow, and Farm Sites in study 3.
- Objectives 4.
- Justification 5.
- Study Design 6.

8.

- Assessment of Effectiveness and Statistics/Biometrics 7.
 - Primary Parameter 1.
 - Other Parameters 2.
 - Science-driven solutions® Diagnostic Details and Requirements
- Schedule of Events 9.

Develop Written and Precise Trial Protocol

- Animal Selection and Identification 10.
- Inclusion/Exclusion and Post-Inclusion Removal Criteria 11.
- Animal Management and Housing 12.
- Description of Feed Composition 13.
- Use of Other Veterinary Product(s) 14.
- **Study Animal Considerations** 15.
- Biosecurity 16.
- **Adverse Events** 17.
- Changes to the Study Protocol Science-driven solutions® 18.
- Data Ownership 19.
- Acknowledged Signatures 20.

Setting Objectives

- Absolutely most important part of conducting research
- Be reasonable
 - How much can you accomplish in one trial?
- Be relevant and timely
 - What is most important to producer?
 - Be courteous and conscientious Science-driven solutio

one bite at a time...

What will be impact on day-to-day operations?

Drives methodology

Defining and refining objectives

- Good objectives should:
 - 1. Be brief and concise
 - 2. Be in a logical sequence
 - 3. Be realistic / reasonable
 - Time frames, budgets
 - 4. Be phrased in operational terms
 - Such that brings producer closer to their objectives... what is relevant to them?
 - 5. Use action verbs
 - For example: assess, determine, verify.
 - 6. Be static once project begins Science-driven solutions®
 - No drifting!

Kevin Lyons, Research Sup. Lipman Hearne 6 Golden Rules

Study design and limitations

- Is there one, perfect design? NO!
 - Logistics
 - What can we accomplish
 - What producer can accomplish
 - Economics
 - Time
- Limitations... often chose "lesser of the evils"
 - Within barn/room
 - Between barns/room
 - Before and after

Trial development

- Don't go alone!
- Biostatistician,
 - Early and often
 - Universities, genetics/pharmaceutical/feed companies, independent
- Study design, power calculation, data management/analysis
 Science-driven solutions[®]
- Generously estimate your time.... Then DOUBLE it!

Study execution

-Data management

- Biostatistician
 - Clear understanding of what data is needed
- Pre-made collection forms

Layout of electronic databases

Microsoft

Access

Excel

Study execution

Helpers... generally better to have plenty of help!

Scier

135

CRAFTSMAN

LET'S

THIS.

solutio

Right tools, right job

Study execution -MANAGEMENT

- Protocol training
 - Implementation
 - Data collection
- ► Regular, <u>scheduled</u> time
 - Daily? Weekly? Monthly? Quarterly?
- Periodic summaries and updates

Study execution

-COMPLETION

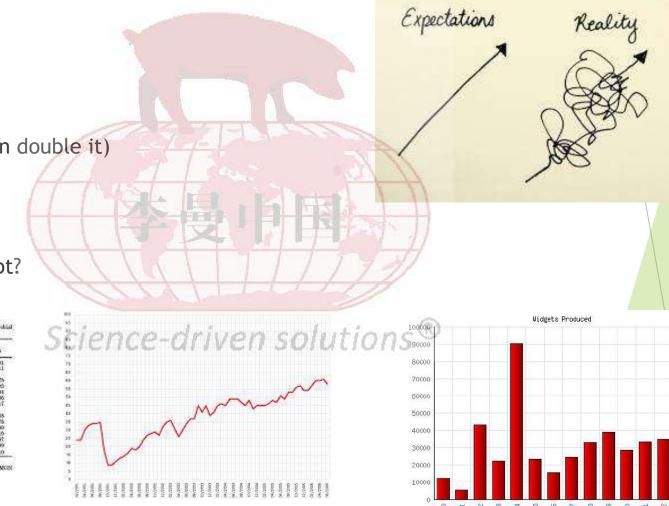
On farm

- 'Leave no trace'
- Expressions of gratitude/appreciation

Data

- Review promptly
- Identify and correct errors

Document, document Science-driven solutions®


Study execution -DATA ANALYSIS AND REPORTING

- Biostatistician
- Discuss analysis time lines
 - Generously estimate (then double it)
- Set expectations
 - Tables? Graphs? Manuscript?

line.	Treatment						
	Control	GARNO	DaDole	ALMINO	MON	604	SEM
gil Apparent damperature of Did, N Filme digestibility	63.8 ⁴	\$3.7°	6.7 51.2*	0.0 40.4*	50.54	6,6 62.4*	4.01 1.13
SEDF, S ADE: % Bas, proof (EL, area) Total VFA, subf	58.8° 63.7° 4374.8° 417.2° 45.2°	44.5° 28.9° 3,756.9° 310.1° 29.7°	41.4° 34.9° 3,359.7° 331.8° 36.8	50.0° 52.0° 4.560.3° 536.0° 6.0°	30.5 ⁵ 30.1 ⁶ 4,0056 ⁶ 561.7 ⁷ 45.5 ⁶⁰	50.07 57.07 49.73.1* 396.07 46.4%	1.58 2.05 130.54 51.56 1.15
Indexedual, mai 300 mai Aostasia Propienate Branchoel-donn YFA 020D CR. (anal) VFA (anal) NAS, against vFA (anal)	63.3" 22.6" 12.5" 2.7" 0.33" 16.7"	545" 25.0' 180" 1.1" 2.1" 0.00"	555555 55555 11355 1355	88.8° 10.6° 2.6° 2.6° 0.15*	55.4 54.2 6.0 1.4 1.4 0.1 9 0.1 9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	81.1 ² 22.8 ⁴ 12.4 ⁴ 2.5 ⁴ 0.17 ⁴⁴ 16.4 ³⁶	0.58 0.76 0.60 0.97 0.97 0.97

 $^{10}{\rm Means}$ within a row with different reperampts differ (P=0.08)

¹Presenter (MR200 - 500 mgC, Alises states (path: al), DA2000 - 200 mgC, dathst datable: AlM200 - 300 mgC, dath memoria: MON - 12 SingL constalls, DOT = 5 mgC, Fourtain. */DS1 - states/area of the state.

Final thoughts

- Plan, but expect the unexpected
- Be flexible and understanding
- Above all, be curious!

"I have no special talent. I am only passionately curious." - Albert Einstein

What's in a sample size estimation?

I have not failed. I've just found 10,00 ways that won't work - Thomas Edison

- Ethical obligations
 - Use fewest animals possible
- Trials are expensive
 - Weights, serum/fecal/nasal samples, feed, rent, etc.

Science-driven solutions®

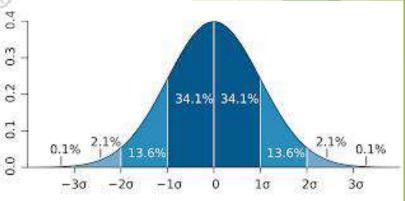
Help refine objectives

Why is this important questions?

What do we want to be able to detect?

Significance vs biological/economical significance?

What amount of uncertainty are we OK with?


Generally look for a p value <0.05</p>

Science-driven solutions[®]

Basic components

- Expected estimates of your outcome
 - How much will the experimental treatment change the outcome of our pigs?
 - Controls (population 1) vs treated (population 2)
 - 'Effect'
 - Mean of weight, ADG, ADFI, FG, body temperature

- Expected amount of variation Science-driven solutions [®]
 - How much natural variation occurs within our pigs?
 - Standard Deviation (pilot study, records)

Philosophy of Vendor to Vet Relationship

- Excellent Products = Efficacy
- Product Availability
- Technical Support
- Let the vet be the vet

Science-driven solutions®

 Collaborate in generating new knowledge that benefits pigs and farmers

Background o PAR

Pipestone Applied Research

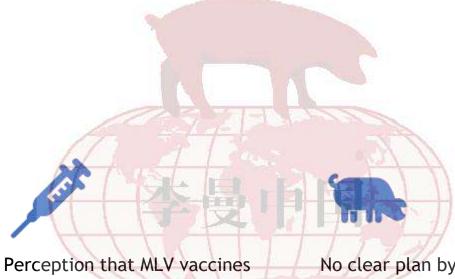
- Animal Health and Genetic
 Performance Research Trials
- Generate relevant and applicable data = practical to the farmer

riven solut P</s 0.05

- Transparency of results = "never bury the results"
- Share with the world

Boehringer Ingelheim/Pipestone Collaboration Topics

PRRSv


1010

0

5

Mycoplasma hyopneumonia
 Lawsonia intracellularis
 The "Cost of Disease Project"

PRRSv

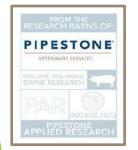
Farmer frustration with PRRSv challenges

not efficacious

No clear plan by Pipestone veterinarians on how to Science-driven s effectively use MLV

Hypothesis

Application of a MLV vaccine can <u>reduce viral shedding</u> and <u>improve</u> <u>performance</u> in growing pigs previously infected with PRRSv



Effect of a modified-live PRRS virus vaccine on shedding of PRRS wild-type virus

Pipestone Applied Research

Dr. Tom Wetzell, Dr. Jean Paul Cano, Justin Rustvold, Dr. Reíd Philips

&

Objectives

- Measure the effect of a PRRS modified-live virus vaccine (Ingelvac[®] PRRS MLV) on wild-type virus shedding in growing pigs vaccinated at weaning and challenged 4 weeks later
- Compare the performance to market weight of pigs vaccinated with Ingelvac[®] PRRS MLV versus non vaccinated pigs challenged with a PRRS field virus.
- Compare the performance of weaned pigs vaccinated with Ingelvac[®] PRRS MLV in the first 28 days post vaccination versus non vaccinated weaned pigs.

Conclusions

PRRSv detection in air samples was significantly reduced:

	Frequency	Duration
Vaccinated pigs	5/120 samples	6 days
Non vaccinated pigs	27/120 samples	55 days

- Performance
 - The proportion of pigs culled was significantly lower in the vaccinated group than non vaccinated.
 - ADG from day 1 day 147 was significantly higher for the vaccinates (1.65) than for non vaccinates (1.59). e-driven solutions
 - On a subset of 300 individual pig weights per room, ADG from day-1 to day 28 (pre challenge) was significantly lower for vaccinated pigs (0.825) than for non vaccinated pigs (0.853).

Our Conclusions:

- Collaboration is key to scientific advancement
- Well designed and well funded projects are keys to getting good results
- When we work together, the pig and the farmer win

Thank you to contributors/collaborators

- Dr. Amanda Sponheim, Boehringer Ingelheim
- Dr. Steve Tousignant, Vaxxinova
- Dr. Joel Nerem, Pipestone Veterinary Services
- University of Minnesota, College of Veterinary Medicine