FUNCTIONAL AMINO ACIDS: IMPACT BEYOND GROWTH IN SWINE

Dan Columbus, PhD Prairie Swine Centre dan.columbus@usask.ca

Leman China Swine Conference *driven solutions* [®] October 2024

Sick Pigs Grow Slowly and Cost More

- Pigs in a 'dirty' environment 10-20% slower (Pluske et al., 2018; Cornelison et al., 2018)
- Sub-clinical disease reduces lean gain by 20-35% and feed efficiency by 10-20% (Le Floc'h et al., 2009)
- ~\$8-30 USD financial loss/market pig and increased mortality (up to 20%) (Pluske et al., 2018; Cornelison et al., 2018)
- Increased antibiotic usage, diagnostic fees, etc

Healthy Pigs are More Efficient

EMISSIONS BY FEED AND MANAGEMENT PRACTICE

Woods, 2023

Base year and projected GHG emissions from livestock systems as a waterfall chart with a range of mitigation measures applied to 2025 with their technical potential.

O

FAO, 2023

Disfort 307208 Looste

Alternatives to Antibiotics?

Spray-dried plasma Conventional egg products Immune egg products Milk protein products Acids Lactose Mannan oligosaccharide Zinc Copper

Alternate cereals Low protein diets Nucleosides Direct-fed microbials Essential oils Fermented liquid feed

Science-driven solutions®

Fructo-oligosaccharides Other oligosaccharides Bacteriocins Bacteriophage Yeast and yeast products Enzymes Competitive inhibition Limit feeding

Pettigrew, 2006

"As our industry moves away from the use of antibiotic growth promoters and heavy metals (e.g. copper and zinc) the **functional value of nutritional ingredients** has become increasingly more important to understand. In our search to create **gut friendly diets** we see new nutrients being added to the specifications like; **glutamine, omega 3, undigested protein, soluble, insoluble and inert fibre** to name a few." (Edwards, 2021; pig333.com)

The amino acid requirements of disease

We feed pigs for growth

- Current requirements based on growth performance
 - Average daily gain, feed efficiency
- Developed under high health conditions, fast growing animals, appropriate feed intake

Feed Intake (efficiency) vs. Maintenance (requirements)

Pastorelli et al., 2012

- Younger animals have more drastic initial response but recover faster
- Females have more drastic initial response than males (not shown)

Clusters — C1 — C2 — C3

Feeding the Immune System

 During the immune response, amino acids are redirected from growth to support the immune response (Reeds et al., 1994)

Mismatch Between Immune System and Skeletal Muscle Amino Acids

Ratios of amino acids in immune system to skeletal muscle

	24 h	5 d						
Arginine	0.81	0.94						
Cysteine	1.88	1.62						
Glycine	1.53	1.62						
Histidine	0 76	0 79						
Isoleuci Synthes	sis of 1 g of a	Ibumin						
Leucine would require degradation								
Lysine	equire degra	Gation						
Methior Of	6 g of muscl	e						
Phenylalanine Scie	nce-drive82solution	15 ⁰ 0.90						
Proline	0.99	1.04						
Valine	1.09	1.18						
Threonine	1.40	1.29						

Klasing, 2016

Evidence for Increased Amino Acid Requirement with Immune Stimulation

Litvak et al., 2013; Wellington et al., 2018; de Ridder et al., 20

Does a blend of functional amino acids improve growth performance in Salmonella-challenged pigs?

What is the effect of dietary protein content?

*FAA+ = Met, Trp, and Thr at 120% of NRC (2012)

Amino acid supplementation increased growth performance

FAA attenuated the immune response

Similar response in grower pigs

	G	iood	PC	DOR	P-value		
	CN	AA+	CN	AA+	SC	D	SC*D
ADG, kg	0.81 ª	0.80ª	0.60c	0.70 ^b	< 0.01	0.04	0.03
ADFI, kg	1.45ª	1.38ab	1.24c	1.29bc	< 0.01	0.81	0.08
G:F, kg/kg	0.55 ^b	0.58ª	0.47c	0.54b	< 0.01	<0.01	0.06
Protein Deposition, g/d	137ª	139ª	109 ^b	127ª	< 0.01	0.03	0.07
Lipid Deposition, g/d	87	84	57	70	< 0.01	0.32	0.10
N retention efficiency, %	60a	60ª	55b	59a	< 0.01	0.03	0.03

AA+, amino acid supplemented (120% Met, Thr, Trp); ADG, average daily gain; ADFI, average daily feed intake; CN, control diet; D, diet; G:F, gain:feed; SC, sanitary conditions

Cunha Valini et al., 2023

Item GOOD ¹ CN	GOOD ¹		ST + POO	R	RSD ²	<i>P</i> -value		
	AA+	CN	AA+		SC	D	SC × D	
7 d post-challenge								
Haptoglobin, g/L	0.27	0.40	0.86	0.89	0.13	< 0.01	0.31	0.50
Total protein, g/dL	6.60	6.65	6.15	6.31	0.26	< 0.01	0.48	0.70
Albumin, g/L	41.63	43.13	35.77	38.44	1.87	< 0.01	0.05	0.57
Urea, mg/dL	17.05	17.11	21.63	18.23	2.03	0.03	0.08	0.20
Creatinine, mg/dL	0.83	0.88	0.95	0.88	0.18	0.56	0.90	0.52
28 d post-challenge								
Haptoglobin, g/L	0.22	0.24	0.35	0.39	0.07	< 0.01	0.50	0.78
Total protein, g/dL	5.76	5.71	5.73	5,85	0.14	0.47	0.63	0.31
Albumin, g/L	34.54	35.70	31.36	34.49	1.54	0.01	0.01	0.26
Urea, mg/dL	17.03	16.78	20.08	16.63	1.83	0.15	0.09	0.12
Creatinine, mg/dL	1.28	1.31. Scier	nce-driv	en solu	itions [®]	0.80	0.28	0.83

¹GOOD, good sanitary condition; ST + POOR, salmonella challenge and poor housing condition; CN, control diet (basal AA profile); AA+, supplemented diet (supplemented AA profile containing 20% above Trp, Thr, and Met + Cys:Lys ratio).

Cunha Valini et al., 2023

Does increased adaptation time improve response to a blend of functional amino acids?

*FAA+ = Met, Trp, and Thr at 120% of NRC (2012)

Amino acid supplementation and a longer adaptation period improves performance

FAA and adaptation time altered acute-phase response and oxidant/antioxidant balance

FAA and adaptation time improved intestinal health

Timing & stage of production important

- Increased Lys:energy content improved growth performance of PRRS-challenged pigs at the time of challenge, however, no improvement was observed if the adjusted diet was provided postchallenge (i.e., peak infection) (Schweer et al.; 2019; Jasper et al., 2020; Miller et al., 2022)
- Growth performance improved only in nursery period and feed efficiency improved only in finisher period in pigs housed in unsanitary conditions (van der Meer et al.; 2016)

What is the impact of functional amino acids in newlyweaned pigs fed nursery diets containing plant-based vs. animal-based protein sources during subsequent Salmonella challenge?

*FAA+ = Met, Trp, and Thr at 120% of NRC (2012)

	Phase I (d 0-10 post-weaning)				Pł				
	Plant based		Animal based		Plant based		Animal based		
	FAA-	FAA+	FAA-	FAA+	FAA-	FAA+	FAA-	FAA+	Grower (d 31- 45 post- weaning)
Corn	27.67	27.31	61.27	60.92	34.94	34.59	71.58	71.22	48.95
Wheet	13.00	13.00			15.00	15.00			15.00
Barley	13.00	13.00		: 	15.00	15.00	*		15.00
Canola meal	10.00	10.00			10.00	10.00			
Meat meal	4	22	4,00	4,00	8	14	3.00	3.00	14
Fish meal		-	5.00	5.00	10	4	4.00	4.00	-
Blood meal		- Fr	1.00	1.00		14	1.00	1.00	
Whey protein	10.00	10.00	10.00	10.00	_ • •	11		-	-
Soybean oil	2.50	7.50			7.50	2.50		+	1.00
Soybean meal, 46% CP	20.00	20.00	17.00	17.00	18.50	18.50	18.00	18.00	16.00
Salt	0.35	0.35	0.35	0.35	0,35	0.35	0.35	0.35	0.35
Limestone	1.12	1.12	0.02	0.02	1.22	1 222	0.42	0.42	1.20
Monocalcium phosphate	1.00	1.00	111		1.10	1.10	0.30	0.30	1.10
Vitamin/Mineral Premix ²	0.40	0.40	0.40	0,40	0.40	0.40	0.40	0.40	0.20
L-Lys HCI	0.57	0.57/6	20049-0	10.491	Scolouti	0/0.51	0.52	0.52	0.62
DL-Met	0.14	0.30	0.18	0.33	0.12	0.27	0.16	0.31	0.15
L-Thr	0.17	0.33	0.16	0,32	0.18	0.34	0.17	0.33	0.21
L-Trp	-	0.04	0.03	0.07	0.01	0.05	0.03	0.08	0.03
L-Val	0.08	0.08	0.05	0.05	0.07	0.07	0.05	0.05	0.11
I-Arg			0.01	0.01				-	
L-Iso	*		0.03	0.03		*	0.02	0.02	0.05
L-His	+	×.	0.01	0.01		*		*	0.02

- Plant-based diets may reduce performance and health status and increase mortality (Skinner et al., 2014)
- Use of animal-based nursery diets or FAA supplementation may improve performance during disease challenge

Plant-based diet FAA Plant-based diet FAA+
Animal-based diet FAA Animal-based diet FAA+

- Animal-based/FAA+ improved fecal score
- FAA reduced postchallenge body temperature and ST translocation
- Plant-based decreased fecal score and increased ST shedding and ST colonization in digesta

~

SUMMARY

- Nutrient requirements to support development and the immune response vs. growth performance
- Protein can impact gut health
 - Consider protein source/digestibility
- Pig response to challenge affected by age, sex, and challenge type

- Adjusting dietary amino acid content can improve growth performance, development, immune response
 - Influenced by supplementation time, protein source

